COVID-19 and public transportation: current assessment, prospects and research needs

Alejandro Tirachini[1,2], Oded Cats[3],

[1] Transport Engineering Division, Civil Engineering Department, Universidad de Chile
[2] Instituto Sistemas Complejos de Ingeniería, Chile
[3] Department of Transport and Planning, Delft University of Technology, The Netherlands

Alejandro.tirachini@ing.uchile.cl
O.Cats@tudelft.nl

Version June 14th, 2020

Abstract

The COVID-19 pandemic poses a great challenge for contemporary public transportation worldwide, resulting from an unprecedented decline in demand and revenue. In this paper, we synthesize the state-of-the-art, up to early June 2020, on key developments regarding public transportation and the COVID-19 pandemic, including the different responses adopted by governments and public transportation agencies around the world, and the research needs pertaining to critical issues that minimize contagion risk in public transportation in the so-called post-lockdown phase. While attempts to adherence to physical distancing (which challenges the very concept of mass public transportation) are looming in several countries, the latest research shows that for closed environments such as public transportation vehicles, the proper use of face masks has emerged as significantly reducing the probability of contagion. The economic and social effects of the COVID-19 outbreak in public transportation extend beyond service performance and health risks to financial viability, social equity and sustainable mobility. There is a risk that if the public transportation sector is perceived to poorly transition to the post-pandemic conditions, that perceptions of public transportation as unhealthy will gain ground and might be sustained. To this end, we identify the research needs and outline a research agenda in relation to public health implications of alternative strategies and scenarios, and in particular measures for reducing crowding in public transportation. We provide an overview and an outlook for transport policy makers, planners and researchers to map the state-of-affairs and research needs related to the impacts of the pandemic crisis on public transportation. Some research needs require urgent attention given what is ultimately at stake in several countries: restoring public transportation systems’ ability to fulfill its societal role.

Keywords: COVID-19 virus transmission; sustainability; safety, resilience, public health
1. Introduction

The rapid spread of the COVID-19 virus, which became a worldwide pandemic in a matter of weeks, has been attributed to hypermobility as a characteristic of our current lifestyle, globalization and the connectivity and accessibility of Wuhan, the first epicenter (Musselwhite, Avineri and Susilo 2020). Since then, the COVID-19 pandemic has been a rapidly evolving situation with profound effects on the way we perform activities and travel worldwide, ranging from a dramatic decrease in air travel to an unprecedented share of the workforce doing tele-working. These impacts are the consequence of governmental measures (e.g. travel restrictions, close down of whole sectors in the economy) as well as travelers’ choices to refrain from traveling in order to reduce their exposure to other people and thereby the risk of contamination.

Urban travel has declined all over the world, but not uniformly for all modes as public transportation has taken the hardest blow, as shown by survey-based data.\(^1\) This was in some cases accompanied by a reduced service supply and exacerbated by the perception of public transportation as riskier than private or personal means of transport, because of the closer contact to other people that is possible, sometimes unavoidable, in public transportation vehicles and stations. Figure 1 shows the variation on the use of public transportation hubs based on Google Mobility Reports data.

\(^1\) See, e.g., the reports of the MOBIS-COVID project for Switzerland (https://ivtmobis.ethz.ch/mobis/covid19/reports/latest) and Tirachini et al. (2020) for Chile.
The fact that a person infected with the novel Coronavirus COVID-19 is contagious before showing any symptom (Ferretti et al. 2020, Javid, Weekes and Matheson 2020) is particularly worrisome for virus exposure in public places. A number of factors contribute to making public transportation stations and vehicles environments of high risk for COVID-19 contagion (UITP, 2020): (i) people are confined in limited space. Contagion risk increases with the level of passenger occupancy in vehicles and stations. The discomfort associated with travelling in crowded buses or trains has increased since the COVID-19 pandemic, due to the added risk of getting infected of a potentially deadly virus for which there is no vaccine yet; (ii) there might be scarce access control to identify passengers or workers that might be sick, and; (iii) the existence of several surfaces, such as seats, handrails, doors and ticket machines. Notwithstanding, there are ways to reduce or eliminate the risks associated with all these factors, which we review in this paper. Moreover, it is unclear the size of the COVID-19 contagion risk during travelling versus the chance of transmission during the activities performed at the places that people visit, as several variables intervene in determining actual risks levels in different environments.

It is remarkable that the response to the COVID-19 pandemic regarding advise on the use of public transportation by authorities, has been quite varied around the world. On one side of the spectrum, there are official guidelines that explicitly discourage the use of public transportation. The United Kingdom is currently clear in advising “You should avoid using public transport where possible” and “Consider all other forms of transport before using public transport” (DfT 2020). Similarly, in the Netherlands, the national government advises to uses public transportation “only if it is really necessary and you do not have any other means of transport, and travel outside the rush hours as much as possible”

In the United States, it is suggested that employers should “offer employees incentives to use forms of transportation that minimize close contact with others (e.g., biking, walking, driving or riding by car either alone or with household members)” (CDC 2020b). Such positions can be accompanied by strict physical distancing rules. For instance, in New South Wales, Australia, in May 2020 the capacity of a standard 12-meter long bus and of a train carriage have been reduced to 12 and 32 passengers, respectively.

On the contrary, other countries, particularly in Asia, have not imposed such strong restrictions and warnings. In some cities of China, bus capacity has been reduced to 50% only, allowing all bus seats to be occupied, with on-board cameras to check compliance with the rule. Whereas metro trains in Taiwan and South Korea are running with large occupancies at peak periods, well beyond the usual COVID-19 physical distancing suggestions (1 or 2 meters of distance between people), in countries where mask use is compulsory in public places and the COVID-19 outbreak has been insofar largely contained. Moreover, as the economy reopen after lockdown in Singapore, the COVID-19 governmental task force has been explicit in stating that social gatherings are still forbidden as per June 8th, but physical distancing in public transportation will not be enforced as long as passengers wear masks and do not talk to each other, in order to minimize contagion risks. In some cases,

2 The baseline for the data published by Google is the median value for the corresponding day of the week, during the 5-week period between January 3rd and February 6th, 2020. More information in https://www.google.com/covid19/mobility/index.html?hl=en
differences in the recommendations and regulations by countries regarding public transportation could be explained by differences in the current prevalence of the COVID-19 disease in their communities, however more factors are likely at play. The appropriateness of containment measures in each country is to be reassessed as the pandemic evolves.

In this paper, we analyze the critical issues pertaining to public transportation use during the COVID-19 pandemic, some of which provide insights to understand the different approaches to public transportation use adopted in different countries, as discussed above. The COVID-19 worldwide crisis is a rapidly evolving event, with a rapidly increasing yet limited and inconclusive scientific evidence so far on several key issues pertaining to virus transmission paths and effectiveness of prevention measures. In sections 2 and 3 of the paper, we review evidence publicly available until early June 2020, on several aspects that are relevant for public transportation during the COVID-19 pandemic. Then, we use this information as a basis to suggest a research agenda on Section 4.

Some of the topics discussed refer to the COVID-19 crisis or lockdown period, in which large-scale measures to contain the spread of the virus are taken by federal, state and local governments, usually implying the avoidance of all unnecessary travel by any means of transport. However, most of the discussion is relevant for the so-called post-lockdown phase, loosely defined as the period of time after the worst part of the crisis has passed, when people start performing again the activities that have been paused because of the COVID-19 crisis. This post-lockdown period might be prolonged, as it is expected to last for as long as there is no widespread immunity in the population. Furthermore, there is no certainty that new waves of widespread infection emerge after the first crisis.

2. COVID-19 effects and new rules for the use of public transport

2.1 The emergence of physical distancing

Respiratory infections such as COVID-19 are transmitted through droplets (5 to 10 μm) and aerosols (smaller than 5 μm), exhaled from infected individuals when breathing, speaking, coughing, and sneezing (Prather, Wang and Schooley 2020). Although there is still plenty of uncertainty about the various ways in which COVID-19 contagion occurs (Han et al. 2020, Leung et al. 2020), airborne transmission in closed environments has been recently established by several authors (Buonanno, Stabile and Morawska 2020, Morawska and Cao 2020, Prather, Wang and Schooley 2020, Shen et al. 2020). Consequently, closed environments are generally riskier than open environments (Nishiura et al. 2020, Qian et al. 2020). Aerosols can accumulate and remain infectious in indoor air for hours (Prather, Wang and Schooley 2020), which is the largest challenge for public transportation and the resuming of day-to-day human activities in other closed environments during the COVID-19 pandemic. For example, guidance on the resuming of activities in workplaces highlight the relevance of natural ventilation, air filtration and strict hygiene protocols to be followed by employees, in addition to the cleaning and disinfection especially of high-touch surfaces, among several other actions (CDC 2020b).

The concept of physical distancing (also called social distancing) has emerged as one of the most widely non-pharmaceutical measures applied to prevent COVID-19 transmission. The World Health Organization recommends to keep a distance of at least 1 meter from other persons (WHO 2020b) while other health organizations suggest a physical distance of 2 meters to reduce the risk of COVID-19 transmission (CDC 2020a). A distance of at least 1 meter has been found to significantly reduce the probability of COVID-19 contagion (Chu et al. 2020). The recommendation of physical distancing is, among the non-pharmaceutical prevention measures, the most significant and consequential for public transportation service deployment and use, provided that physical distancing strongly reduces
the capacity of vehicles and stations to accommodate travelers. Simply put, physical distancing is in conflict with the concept of public transportation (Musselwhite, Aivneri and Susilo 2020).

Current research suggests that the general advice of keeping a distance of 1, 1.5 or 2 meters from other people as a precautionary measure works better in outdoor environments with short exposure times, but this physical distance rule has been challenged for indoor environments, where contagion from an infected to a non-infected person has been reported for larger distances. Shen et al. (2020) report the case of a bus trip in Ningbo, China in January 2020, where a single asymptomatic infected person is believed to have transmitted the COVID-19 virus to 22 passengers (out of 67 persons in total) over two 50-minute bus rides. In this case, the passengers did not wear face masks. Current research recognizes that the duration of exposure is also relevant (Prather, Wang and Schooley 2020, SAGE 2020), however at the moment of writing it is still unknown how the probability of contagion increases as a function of the duration of exposure. This is particularly relevant for public transportation use, in order to understand the risks inherent to long trips relative to short trips. All in all, without face protection, frequent cleaning and ventilation, public transportation ticks all the boxes to be a prime virus spreader: it is a closed environment where people might be contained for a prolonged period of time. In this setting, physical distancing can reduce the number of people infected if the virus is circulating, but by itself does not work to stop virus spreading if not complemented with other measures such as universal face mask use.

2.2 The use of face masks

The use of face masks by asymptomatic persons as a virus containment measure has been a contentious issue particularly during the first months of the COVID-19 pandemic (Greenhalgh et al. 2020, Javid, Weekes and Matheson 2020). Arguments against suggesting the widespread use of face masks include the initial limited evidence of their efficiency, misuse due to lack of information about how to properly wear them, and the possibility of adopting risk behaviors when wearing masks (Greenhalgh et al. 2020). For several months, the World Health Organization (WHO) recommended using face masks only to people with respiratory symptoms and for healthcare workers (WHO 2020b). On June 5th, 2020, the WHO revised its guidelines’ into suggesting the use of non-medical (fabric) masks in public places including public transportation, while medical masks are suggested for vulnerable populations (WHO 2020a). Following the WHO, the US Centers for Disease Control and Prevention (CDC) also originally advised the general public not to wear masks, but this recommendation was updated in April 2020, suggesting the use of fabric masks out in the public (CDC 2020a), apparently as a substitute due to the shortage of surgical masks (Greenhalgh et al. 2020). The efficiency of different fabrics to filtrate aerosol particulates has been recently tested by Konda et al. (2020), finding that the filtration level could be similar to that of medical masks when multiple layers are used and when different fabrics are combined (e.g., cotton and silk, cotton and chiffon).

Even though doubts over universal use of face masks were prevalent in many countries particularly during the first months of the COVID-19 crisis, the latest research on the topic points to the fact that universal mask wearing is critical for the containment of the COVID-19 virus. Face masks can significantly reduce the number of infectious COVID-19 viruses in exhaled breath (Chu et al. 2020, Leung et al. 2020), particularly of asymptomatic people and those with mild symptoms (Prather, Wang and Schooley 2020). The filtration capacity of fabric masks was been found to be larger than 80% for particles <300 nm, and larger 90% for particles >300 nm, with particular combinations of common fabrics including cotton and other materials such as silk, chiffon and flannel (Konda et al. 2020). The “precautionary principle” has been lately put forward to suggest the widespread use of face masks during the COVID-19 crisis, given that the potential gains in public health of such policy are likely to be much larger than the risks involved (Greenhalgh et al. 2020, Javid, Weekes and Matheson 2020). At this stage, it is also clear from epidemiological data, that countries that have been effective in
containing the spread of COVID-19, such as Taiwan, Japan, Hong Kong, Singapore, and South Korea, have enforced universal mask wearing (Prather, Wang and Schooley 2020). The effectiveness of a widespread mask adoption among the population, in reducing the death rate due to COVID-19 at city or country levels, has also been predicted by simulation models (Eikenberry et al. 2020, Ngonghala et al. 2020). Education on the proper use of face masks is as relevant as enforcing universal use, because an improper fit of the mask can reduce aerosol filtration efficiency by 60% (Konda et al. 2020).

Thus, the accumulated evidence suggests that face mask use in public transportation can be an effective way of stopping COVID-19 virus transmission only if proper masks are used and people know how to fit and handle them correctly. Therefore, a campaign for face mask use needs both to make sure that proper masks are affordable by the general population and that people are properly educated about their use. Eye protection devices also reduce the probability of COVID-19 contagion (Chu et al. 2020), however their use have not been enforced for public transportation passengers. Eye protection could be considered, among others, for higher-risk workers such as bus drivers.

2.3 Hygiene, sanitation and ventilation

Regarding enhanced hygiene and cleaning standards, it has been found that the COVID-19 virus remains infectious from hours to days on different sorts of surfaces (Fa-Chun et al. 2020, van Doremalen et al. 2020), including plastic and stainless steel. Therefore, physical contact with a contaminated surface is a potential mode of COVID-19 transmission. This implies that a frequent cleaning of high touch surfaces in public transportation vehicles and stations is recommended as a preventive measure. Sanitization of public transportation vehicles and stations has been widely adopted around the world, with different levels of intensity depending on the level of organization and the resources available in each agency. Some guidelines already advise on the increased hygiene measures that must be put in place for public transportation staff, not only on vehicles and stations, but also in dressing rooms, meeting rooms and management offices (GIZ 2020, UITP 2020). Rigorous evaluations on the effectiveness of these measures are lacking and very much needed. In the post-lockdown period, it might be necessary to have personal protection elements and hygiene measures to reassure staff and passengers and keep their confidence on the public transportation system, even if the risk of infections is considered low (UITP 2020). Relevant information should be widely provided to users, including in relation to standards of conduct and hygiene, the correct use of masks and avoidance of public transportation use if the passenger shows symptoms such as fever and coughing (GIZ 2020).

If the use of air conditioning can further spread the COVID-19 virus leading to transmission at a longer distance from the source is still unclear at this stage and likely depends on using recirculated air. Limited evidence suggests that air conditioning can play a role in contagion in indoor environments such as restaurants (Jianyun et al. 2020). CDC recommends the use of air ventilation/air conditioning systems on non-recirculation mode (CDC 2020c). Frequent ventilation of closed spaces such as public transportation vehicles is usually recommended as a prevention measure (Buonanno, Stabile and Morawska 2020, CDC 2020c, SAGE 2020), which is particularly relevant for drivers that spend several hours inside vehicles. In the absence of specific guidance about ventilation in public transportation vehicles, in the United Kingdom it is recommended to follow the guidelines for buildings, i.e., 8-10 l/s/person of fresh air, without recirculation (SAGE 2020).

3. Economic and social effects of the COVID-19 outbreak in public transportation

3.1 Financial adversity
In a matter of weeks, the COVID-19 pandemic became the largest economic crisis for public transportation services in decades. The severe decline in public transportation demand due to COVID-19 has been combined with increased costs due to new hygiene and cleaning standards that need to be enforced. Under these conditions, several public transportation agencies are financially struggling, putting pressure on governments. The largest US public transportation agency, the New York’s Metropolitan Transportation Authority (MTA), is seeking a USD $4 billion bailout due to the COVID-19 pandemic.\(^7\) In other countries like Chile the government already reached an agreement to compensate bus operators for the loss in demand (up to 80\%) in the capital city, Santiago.\(^8\) The Dutch government has allocated 1.5 billion Euro for compensating the Dutch Railways (NS) and the three urban public transport operators in Amsterdam, the Hague and Rotterdam.\(^9\) The Swedish government transferred 3 billion SEK to cover for nation-wide loss incomes from reduced ticket sales\(^10\). An additional problem for public transportation agencies looking for financial relief is that the COVID-19 pandemic impacts negatively the availability of public funds, given that governments face a large number of social needs that require financial support (e.g., unemployment, risk of bankrupt of small businesses, hospitals and health care) while expecting a reduction in tax intakes. In this context, public transportation needs to compete against several other social needs for financial support.

Regarding fare payment, new rules for the use of public transportation may have undesired effects on reducing revenues. Compulsory rear-door boarding can be recommended to avoid contact between drivers and passengers, if drivers are not physically separated from passengers. This policy has been implemented in cities such as Santiago and Montreal as well as in the Netherlands from March 2020. In those systems that rely on passengers boarding on the front door for on-board fare payment, such a measure has financial risks as inducing or forcing free rides. Apart from this issue, traditional ticket inspection, with inspectors approaching passengers to check if they hold a valid ticket or travel pass, may not be possible due to increased contagion risk (UITP 2020). This may result in an increase in fare evasion if no alternative to control the payment of tickets is available.

The largest problem to be faced due to the decrease in demand and the resulting financial pressure in public transport, is the possibility of bankruptcy of public transportation providers, if not rescued. Some countries may have the means to support public transport, other countries may not. In low-income and developing countries, it is usual that public transportation is provided in unregulated or poorly regulated environments (Gwilliam 1999, Tirachini 2019), without proper standards of safety and hygiene and no public subsidies at all, where drivers’ income depends directly on the number of passengers carried on a daily basis. The financial conditions of such systems and of the people involved in delivering this type of public transportation service is highly dependent on the final duration of the COVID-19 crisis.

3.2 Social equity

Working from home during the COVID-19 crisis has been shown to be mostly a privilege of higher income jobs, as reported based on data from different countries such as the US, Canada, and Chile (Tirachini et al. 2020). Based on survey data collected from 20,000 respondents in Germany, the UK and the US, Adams-Prassl et al. (2020) concluded that less educated workers and women are more negatively impacted by the ramifications of the pandemic on the labor market. The long-term impacts of the pandemic crisis are expected to exacerbate disparities not only within countries but also between countries due to their different levels of resourcefulness in recovering from the crisis.

In this context, the vision of public transportation as a motor of social integration rather than of social segregation seems today more distant than ever. With the COVID-19 pandemic, people have abandoned public transportation, but not uniformly: high-income groups have left public transportation in larger numbers. In a recent survey comparing trips made in the last week pre-crisis in Santiago versus the first week with nationwide measures to contain the virus in March 2020, it is found that people from higher-income households are the ones who stopped travelling the most by public transport. While trips on public transportation fall by between 30% and 40% for people in the lowest income households, the decrease in public transportation use is greater than 70% for the highest income households (estimation based on data from Tirachini et al. 2020). These numbers quantify the assertion that the people that leave public transportation are mainly those who have the option to do it - by switching to work from home, by being able to pay for alternative means of transportation and resorting to online shopping - while those who continue to travel by public transportation are to a large extent people with lower incomes. This difference in the rate of adaptation in travel behavior between different social groups is likely to continue in some ways also throughout the post-crisis period. Consequently, improving public transportation today is, more than ever, a matter of social equity.

3.3 Sustainable mobility

The sharp reduction in public transportation demand due to the new physical distance behaviors and the fear of COVID-19 contagion poses several questions for the future sustainability of mobility in cities. Designing a plan of measures to make public transportation safe, for a period of time (post-crisis) that is likely to be prolonged (as long as there is no widespread immunity to the new virus), requires several coordinated actions from policy makers, public transportation agencies, workers and users. The objective should be that public transportation is as safe as possible, and should be able to accommodate and attract more people than those who have no viable alternative.

If buses and trains are running almost empty in the COVID-19 era, then the economic and environmental efficiency argument for promoting public transportation is severely challenged, and the only argument remaining would be providing mobility to those that have to travel because public transportation is their only option. If new physical distance and occupancy rules are imposed, a valid question is studying the demand threshold (i.e. breakeven point) in public transportation vehicle occupancy that makes buses more efficient in terms of energy consumption, congestion and pollution than private cars. Talking about road space consumption, in Santiago, before the onset of the COVID-19 crisis, buses carried between 28 and 65 passengers on average (taking into account peak and off-peak periods), while cars had an average occupancy between 1.4 and 1.5 pax/veh (SECTRA 2013).

Therefore, considering a passenger car equivalency (PCE) of 2 to 3 cars per bus, it is estimated that car users occupy between 10 and 15 times more road space than bus users. Therefore, average bus occupancy can be largely reduced and still, this mode is more efficient in the use of road space than travelling by car.

4. The way forward: Policy directions and a research agenda

In the following, we identify and discuss key directions for potential policy interventions as well as areas where there is a need for advancing our knowledge. This section outlines a research agenda to address an array of identified research gaps and questions pertaining to public health considerations (4.1) and measures for reducing crowding (4.2) in public transportation.

4.1 Public health considerations in public transportation planning

(i) How to incorporate public health considerations into service planning?

Passenger transportation where people share the same facilities and vehicles is especially prone to virus spreading when proper measures are not taken. This is particularly true for mass public transportation where a large number of passengers with diverse origins and destinations are travelling in crowded conditions. The question is then what are the costs that the public transportation system should bear – in the form of preventive measures and prolonged travel times - to reduce the public health risks associated with contagion. Although it brings unease, societies have limited to how much they are willing to sacrifice to save life. Regardless of the assumed risk level, this requires making moral choices, which are as pointed out by Chorus (2020), are by no means new in the transportation policy domain, think for instance of deciding whether to invest in a connection that will save passenger-hours as opposed to a safety measure that is expected to reduce the risk of fatal accidents. Also, in the case of making decisions in the context of COVID-19, this involves trade-offs between abstract but grave risks versus the experience and annoyances for many. Hence, the need for methods to support evidence-based decision making and for professionals to convey to decision makers and the public the dilemmas and decisions made.

(ii) How important is physical distancing in public transportation?

During the COVID-19 crisis or lockdown period, it is generally agreed that travel has to be minimized, allowing only essential or unavoidable trips. As activities are resumed in the post-lockdown period, it gives rise to the question of physical distancing in public transport. The scarce empirical research available hitherto does not provide conclusive evidence as to the effect of physical distancing in closed environments such as public transportation facilities and vehicles (Section 2.1). There is, albeit limited, evidence showing that the relevance of physical distancing in public transport can be greatly reduced if other non-pharmaceutical measures are enforced (Sections 2.2 and 2.3), such as the correct use of face masks, enhanced hygiene or even a prohibition of talking in public transport (Singapore case). On the one hand, if contagion in indoors environments can occur also for distances larger than 2 meters due to airborne transmission, as reported by Shen et al. (2020) and further discussed in recent epidemiological contributions (Morawska and Cao 2020, Prather, Wang and Schooley 2020, Setti et al. 2020), then without wearing face mask there is still a risk of virus spreading. In the presence of an infected passenger, physical distancing can help reduce the number of people infected but not prevent infection altogether when passengers do not wear masks. On the other hand, the latest epidemiological research shows that masks are effective in preventing or at least significantly reducing COVID-19 virus spread (Chu et al. 2020, Leung et al. 2020, Prather, Wang and Schooley 2020). There are public transportation systems that currently run with large occupancies, with passenger spacing below the two-meter physical distance rule, with no COVID-19 outbreaks attributed to public
transportation when everyone wears masks so far, as recently reported for Japan. In this country, it was recently found that most COVID-19 contagion clusters originated in places where people gather, eat, drink, chat and sing, such as gyms, pubs, live music venues and karaoke rooms. No cluster was linked to commuter trains. The fact that in public transportation close-range conversation among strangers is infrequent has been hypothesized by virologist Hitoshi Oshitani as one of the explanations for these findings. This type of result had led Singapore to the current decision of not enforcing strict physical distancing rules in public transportation, but to require passengers to wear face masks and not talk to each other.

Even though the safety gains from universal adoption of face masks are potentially large, at the moment it is unknown how much safer a public transportation vehicle or station is if all passengers wear different types of masks (surgical masks, cloth masks, N95 masks), at different stages of the pandemic, versus if only a subset of them does it. This is a matter of utmost relevance because it can help in defining a “reasonable” occupancy level for public transport, an element that has significant economic, operational and social implications. Put differently, if a physical distance of 2 meters does not properly work in public transportation vehicles if people do not wear masks, what should be the maximum passenger capacity of vehicles if all people use masks properly? The current experience in large cities in Asia, such as Tokyo and Seoul shows that a physical distance shorter than one meter in public transportation seems to work well, under universal mask use and high hygiene standards, however, the current prevalence of the virus in those places is unknown. The evolution of such an approach to public transportation use, without setting strong physical distancing rules, needs to be closely followed in the near future, to understand the conditions that would allow for its replication in other cities around the world.

It is worth stressing that solid evidence on the COVID-19 transmission risk in public transportation under different use and operation rules (including the adoption of preventive strategies) is still scarce, and new insights are expected to be gained in the coming months. The problem of new maximum occupancy standard due to new requirements of physical distancing is a multifaceted challenge, that depends on the use of face masks, sanitization and ventilation, among other factors. In reality, however, conditions are likely to be less clear-cut with some passengers not (properly) wearing a mask. We therefore assume in the following that some form of physical distancing may be needed and is indeed currently the reality in many countries.

(iii) What are the trade-offs between service efficiency, effectiveness and robustness in the context of COVID-19?

As clearly and painfully demonstrated in this pandemic crisis, the connectivity offered by all means of transportation is not only an asset and a catalyst of exchange of ideas and goods but also a potential catalyst of adversity such as viruses. System robustness is measured in terms of its capacity to withstand shocks and recover its functionality. The provision of public transportation services in the era of the pandemic and its aftermath involves trading-off between its effectiveness - defined in terms of the accessibility and level-of-service offered, robustness - the health risks associated with travelling by public transport, and efficiency - the amount of resources needed to offer a given service supply. As is often the case, there is an inherent conflict between efficiency and robustness since the latter requires designing larger margins and reserves which imply redundancy under normal circumstances. This is particularly stressing given the already adverse financial conditions experienced by many public transport service providers worldwide (Section 3.1). In the context of complying with physical

distancing measures and thus a reduced capacity standard, the robust solution will involve not only inefficient from an operator’s perspective (i.e. requiring additional resources) but also ineffective since it results with a deterioration in the level-of-service due to expected lower effective frequency and hence longer waiting times in the post-crisis phase.

(iv) How shall we measure system resilience and its ability to restore functionality?

Given the importance of public transportation systems as critical infrastructure and to society at large (Homeland Security 2010), it is essential to devise measures to mitigate the impacts of virus spreading in public transportation systems, while maintaining their functionality as a critical infrastructure to the extent possible. The bathtub model that has been proposed by McDaniels et al. (2008) offers a conceptual framework for analyzing the evolution of system performance in the event of a disruption. In the context of public transport, system performance can be measured in terms of share of the original capacity that is provisioned, total number of passengers transported, total pass-km, and total passenger time losses attributed to the disruption. The conceptualization and analysis of the robustness and resilience of public transportation systems has mostly been limited to supply performance and passenger accessibility and connectivity (Jenelius and Cats 2015, Bešinović 2020). The pandemic poses a shock to the system which caused an abrupt reduction in system performance, with consequences for its core functionalities. Some parts of the world are currently experiencing different phases of the recovery period. The recovery period sees an increase in system performance, albeit there is no guarantee that (i) system recovery will follow a monotonic pattern, setbacks such as more restrictive measures introduced following a so-called ‘second wave’, and; (ii) system performance will recover back to the original level, i.e. the recovery may yield a new normal. This calls for the development of concepts and methods to assess system resilience while encompassing impacts for public health in addition to accessibility, equity, sustainability and financial viability.

(v) How can virus spreading in public transportation be assessed?

Understanding and quantifying virus spreading in public transportation systems is essential for evaluating the public health consequences of alternative scenarios and strategies. There is therefore an urgent need to couple transportation models and epidemiological models in order to analyze the resulting contact graphs and their spatial consequences (Colizza et al. 2007, Barabási 2014). The contact network reflects the set of passengers one potentially gets in contact with during the course of his/her public transportation journey. The transportation model will perform the assignment of travel demand to the service network, the output thereof will be used as input to the epidemiological model, which then updates the states of segments of the travel demand population in relation to virus carrying. Each passenger on any given day may be characterized by one of the following states: susceptible (not infected), infected (and travelling), quarantined (infected and not travelling), and immune (and travelling again). Passenger demand can then be re-assigned to the network in order to analyze the evolution of the virus spreading and obtain key performance indicators such as the share of the passenger population that has been infected or the number of days needed for nullifying the number of new cases. Since virus spreading requires physical proximity to an infected passenger, it is essential to analyze individual passenger trajectories and the resulting crowding levels. Krishnakumari and Cats (2020) demonstrated how this can be done using detailed smart card trajectories. They estimated the crowding conditions that each passenger is experiencing on any segment of the journey and the probability that a person is in proximity to someone who is infected, based on the trajectories of those assumed initially infected. Such modelling capabilities allow testing the potential consequences of various demand levels, service provision and assumed virus spreading characteristics to support the design of exit strategies and post-pandemic realities.

(vi) How can contact tracing reduce the risk of virus spreading in public transport?
Medical developments such as having more members of the public tested and a faster diagnosis will have significant impacts also on the potential spread of the virus in public transport, by reducing the number of infected passengers travelling, and therefore reducing the health risk of others. To this end, contact tracing can also support the shortening of the exposure period for passengers that are potential carriers of the virus, prior to diagnosis. Governments worldwide have introduced or are in the process of introducing contact tracing apps designed to facilitate this. In the context of public transport, smart card data validations may be used for contact tracing in public transportation systems as demonstrated by Krishnakumari and Cats (2020) for the Washington D.C. metro system. Passively collected fare collection data offers therefore a unique source for conducting contact tracing research and support the identification of contact networks based on recorded or inferred passenger trajectories. In systems that require tap-in only and/or are based on station-based (rather than vehicle-based) validation, the application of alighting station and vehicle inference methods will be instrumental.

4.2 Avoiding the crowds: accommodating physical distancing regulations

(vii) What are the implications of physical distancing on service capacity?

The public transportation sector is currently focusing on the need to adjust services to adhere to the physical distancing requirements as well as the cleanliness of vehicles and stations, to comply with governmental instructions and reduce public health risks (see Section 2 for details). As discussed above, there is however no conclusive evidence at the moment on the relevance of strong physical distance rules (as 2 meters is likely not enough in closed environments if people do not wear masks, and there are public transport systems with physical large occupancy levels, in which everyone wears a masks, with good results). Complying with physical distancing requirements comes at the cost of a dramatic decrease in the service capacity offered and consequently the system’s ability to satisfy demand. For example, assuming that passengers are spaced across platforms and metro trains seeking to ensure a minimum of 1.5 meter (~5 feet) distance from any fellow traveler, this implies a capacity of 312 passengers, a reduction of more than 80% for the Washington DC metro (Krishnakumari and Cats 2020). Similarly, a maximum capacity of 18-20 passengers can be suggested for a standard 12 meters long bus as a way to keep currently common usual distance (GIZ 2020). However, any new COVID-19 induced capacity guidelines should be revisited and re-assessed as the pandemic evolves and robust epidemiological knowledge becomes available. In many systems, increasing capacity in terms of vehicles per hour or per day (as a way to counterbalance a reduction on capacity per vehicle) is not an option, either because in peak periods services run at full capacity already, or because of a shortage of resources (lack of more vehicles, drivers and operators). This might be particularly challenging in the upcoming period because of limited budgets due to a reduction of revenue (Section 3.1), reduced driver availability due to the pandemic itself or due to the need to protect drivers that are at higher risk (e.g., workers older than 60 years old, with chronic diseases). There might also be requirements from drivers’ unions to reduce working times and the number of shifts during the time of the pandemic, to reduce exposure to the virus. Dealing with the possible absenteeism of staff due to COVID-19 related issues is a common concern of public transportation operators (UITP 2020).

(viii) How can services be re-designed to accommodate the prevailing demand patterns and capacity limitations?

Public transportation services may be re-designed to accommodate more efficiently and effectively passenger demand given the new more restrictive capacity limitations. For example, service frequencies may be re-set so as to maximize the share of passenger demand that can be accommodated by public transportation as demonstrated by Gkiotsalitis and Cats (2020) for the Washington DC metro network. Service re-design may also extend beyond the re-allocation to existing services to involve changes in service configuration, for example in terms of stopping patterns and
short-turnings, to better adjust supply to uneven spatial patterns of demand (Tirachini, Cortés and Jara-Díaz 2011). This calls for the potential introduction of physical distancing constraints into strategic, tactical and operational decisions as well as accounting for their consequences.

Leaving parts of the travel demand unserved has equity ramifications that need to be assessed and integrated into the decision making process. On-demand transportation services may be used to cater for demand unserved by line-based public transport. Travelling by means of on-demand shared services is expected to result with a contact network of a limited size (Kucharski and Cats 2020). Furthermore, this may not only be a mean to transport passengers otherwise left behind, but also offer a door-to-door service for users that are members of risk groups such as the elderly but also healthcare workers. Arrangements for shared-mobility companies to provide exclusive services to healthcare workers have been already implemented in some countries, such as Mexico16 and Germany17.

(ix) How can limited capacity be most effectively managed?

There are several ways to manage scarce resources. One option is to let people queue for these services, possibly denied several times before they can board a vehicle. This will not only severely prolong travel times, will make the service unpredictable and lead to dissatisfaction but also pose public health risks with large crowds queuing. An alternative is to restrict access. Depending on the service type and fare validation technology, reservation systems might be deployed, having passengers committed to travel on certain time periods or certain trajectories, or better still to specific itineraries. This will not only allow to manage service capacities and thus ensure compliance with the physical distancing requirements as any reservation system will, but it will also make sure that the number of passengers that each passenger is exposed to over a longer period of time is limited. This comes however of course at the cost of limiting travelers’ spontaneity, i.e., inducing scheduling delays for users. The feasibility of such a solution is however likely to be limited to systems where digital billing and subscription capabilities are already available. Restrictive access could be done on the basis of setting priorities or even restrictions. For example, prioritizing or restricting trips to those performed by essential workers such as medical support staff and occupational categories that are not able to perform their work remotely, mitigating some of the social equity ramifications of the shutdown (see Section 3.2). Certain time periods might be restricted for certain user groups, such as allowing only the elderly to travel between 10am and 4pm. Such a prioritization or restriction needs to be made by the local policy makers. Alternatively, pricing can be used as an instrument to manage capacity. For example, greater discounts might be offered in the off-peak periods to stimulate passengers that can shift their departure time to do so and thereby reduce crowding levels in periods when capacity is scarce. Mobility-as-a-Service (MaaS) ecosystems may play a key role in enabling and facilitating a smooth use of different (new) modes by providing an integrated platform for information and payments. In addition, there could be a role for MaaS platforms to facilitate a potential booking system for public transport, and to apply different fares and priorities for different sectors or risk groups.

(x) How can crowding be effectively managed to reduce public health risks?

Since physical proximity is currently assumed to be the precondition for virus spreading, crowding management is of paramount importance in combating it. This goes for all parts of the public transportation system, including platforms and station walkways in addition to vehicles so as to

16 Jetty, a company to book seats in shared vans and buses, made an agreement with the local governen to provide custom-made services to healthcare workers during the COVID-19 pandemic in the city of Toluca, see https://www.jetty.mx/update/2020/05/25/jetty-apoyo-personal-medico-toluca.html, accessed June 3rd, 2020
17 Offered by ViaVan, see https://cities-today.com/viavan-offers-free-rides-for-berlin-healthcare-staff/, accessed June 3rd, 2020
minimize crowding during all parts of the passengers’ journey: walking, waiting, travelling on-board and transferring. Crowding management measures at stations such as one-way entrances, passages and staircases can help isolating flows and reduce the physical interaction between passengers. Similarly, designated vehicle doors might be used for boarding and alighting. However, such a measure is likely to increase dwell time at stops in the case that boarding from all doors was previously allowed (Jara-Díaz and Tirachini 2013, West and Cats 2017).

Public transportation priority and control measures can also play a critical role in mitigating passenger crowding. In the post-lockdown period, congestion may increase if not properly managed, because of the migration of travelers from public transportation to cars. As congestion increases, operational measures to support public transportation will be more necessary than ever. Dedicated bus lanes are a way not only to reduce operator costs and travel time for public transportation users, but also to reduce crowding on vehicles and at bus stops and stations. If the bus fleet is kept constant, a reduction in travel time will be translated into a proportional reduction in average occupancy levels per vehicle, due to the increase in service frequency. At the same time, as the irregularity of headways between buses induces unnecessary overcrowding (a half-empty bus followed by a full bus), even if the aggregate capacity of the system is more than enough to satisfy the demand for public transportation trips, measures to control bus headway to mitigate bus bunching will become more relevant than ever during the COVID-19 pandemic. Strategies to deal with bus bunching include holding, station skipping and speed control (e.g., Hickman 2001, Muñoz et al. 2013).

(xii) What is the potential role of travel information on mitigating crowding?

Information on on-board crowding conditions is becoming increasingly available. A number of travel apps (e.g. Google Maps Transit service, Moovit) provide crowding information based on historical user feedback on crowding experience. Moreover, apps developed by individual service providers such as the Dutch railways, Tokyo railways and Singapore buses distribute crowding information which is based on real-time data of vehicle occupancy loads (e.g., from weight sensors, Hänseler et al. 2020). In contrast, implementations of at-stop crowding information displays regarding upcoming departures have been hitherto limited. Passengers’ reluctance to ride a crowded vehicle is likely to be much higher due to the pandemic, reflecting in larger crowding penalties than those previously reported (e.g., Hörcher, Graham and Anderson 2017, Tirachini et al. 2017, Yap, Cats and van Arem 2020). As a consequence, more passengers are expected to seek crowding information and adjust their travel...
plans accordingly. This can prove to be an effective means of distributing travel demand over the available supply. A key challenge is the need to ensure that the reliability of the information provisioned is not hampered by an over-response, defeating its purpose. This calls for the development of demand-anticipatory travel information schemes inspired by developments in the car traffic context, where this has been subject of considerable research effort (e.g., Dong, Mahmassani and Lu 2006).

(xiii) What are the behavioral responses and adaptation exercised by passengers?

Passengers are able to exercise a variety of behavioral adaptations in response to the COVID-19 pandemic conditions, and related lockdown and exit strategies measures. The main motivation is to avoid exposure to the virus. In the absence of better information, this will often imply following the principle of ‘avoiding the crowds’. This can have impacts on all travel choice dimensions from altering routes to less congested ones, changing departure time to avoid the peaks, mode shift to privately used (and preferably also owned) modes, changing trip destination (e.g. less crowded stores) or refraining from travelling altogether (e.g. e-shopping). All of these decisions will have great consequences for travel patterns and ridership. There is a considerable variation among the population in the willingness and ability to exercise such adaption depending on personal preferences but also household income and composition, logistics, working hours flexibility, the possibility to work from home, digital proficiency and vehicle availability. All of which mean that there is a considerable inequality in people’s ability to avoid the crowds if they so desire as supported by some preliminary evidence (see Section 3.2).

5. Concluding remarks

The COVID-19 pandemic poses great challenges for public transportation systems worldwide. We have reviewed the evidence available insofar as to the influence of several factors on reducing or increasing the COVID-19 contagion risk in public transportation, including the occupancy levels of vehicles and stations, the exposure time (trip length), the enforcement of face mask use and the application of enhanced hygiene standards (including sanitization and ventilation). The on-going pandemic forces policy makers to make decisions in the context of uncertainty. The absolute risk of contagion is highly dependent on the disease prevalence in the community at any specific time, therefore any restrictions or regulations on public transportation use should be tailored differently depending on the phase of an outbreak. A detailed analysis on this issue is required, identifying levels of contagion that make public transportation use increasingly risky from a public health perspective. Notwithstanding, some promising evidence is starting to emerge as to how to make public transportation safe, or at least to significantly decrease contagion risk, with implications particularly for the post-lockdown phase. It is still too early to arrive at definitive conclusions; more research is needed to assess the true level of safety of public transportation when proper virus containment measures are taken at different stages of the pandemic. This is a matter of utmost relevance because if public transportation will be perceived as unsafe and unhealthy by large segments of the public, it will not be able to fulfill the societal roles that it is set to serve, including accessibility, sustainability and equity. Certain developments such as finding a vaccine or lifting lockdown measures lie outside the control of the public transportation sector, but many of the measures discussed above are within the principal responsibility of public transportation service providers. This will also help assure the public that adequate measures are taken. Public communication as well as relations with the public and enforcement are of special importance in this period.

There is a risk that if the public transportation sector is perceived to poorly transition to two-meter society conditions, that perceptions of public transportation as unhealthy will gain ground and might be sustained even in the aftermath, including the formation of new habits. Our societies need public
transportation services to prosper and to address key societal challenges which are paramount and persistent. It is therefore critical to avoid contributing to stereotyping the use of public transportation as unhealthy, which may outlive the pandemic itself and hinder the long-term prospects of public transportation services.

Acknowledgements
Support from ANID Chile (Grant PIA/BASAL AFB180003) is acknowledged. We are indebted to Cristobal Cuadrado (School of Public Health, Universidad de Chile) and three anonymous referees for comments that helped us to improve the paper. All views and any errors are the authors’ responsibility alone.

References

SECTRA 2013. Mediciones de aforos de tráfico y perfiles de carga en servicios troncales en el Gran Santiago. Report prepared by DICTUC.

