Crowding in public transport

Crowding in public transport can be of major influence on passengers’ travel experience and therefore affect route and mode choice. The impact of crowding on passenger choices has been estimated in many studies by means of stated-preferences choice experiments. Respondents are then asked to make hypothetical choices under a range of scenarios based on which choice models can be estimated, including quantifying the impact of on-board crowding on route choice. This results in in-vehicle multiplier values ranging between 1-2.7 (!). Results from meta-analysis of these studies have been for example reported and used in evaluating capacity increase investments (see the case of our study of a metro line in Stockholm).

These estimates seem strangely high. They imply that passengers will rather travel twice as long if they can have a seat instead of to travelling in a densely crowded vehicle. These has severe ramifications for project appraisal – do you invest in increasing vehicle size, higher frequency or higher speed? In a choice experiment it is easy to indicate that you rather wait for the next vehicle or travel longer than to ride a busy vehicle. However, there was very scarce evidence that people actually do these trade-offs in reality. We therefore wanted to find out to what extent crowding impacts passenger route choices based on observed behavior. This is now possible thanks to large-scale smart card deployment.

See full paper here: “Crowding valuation in urban tram and bus transportation based on smart card data”

In this study, crowding valuation for urban tram and bus travelling is determined fully based on revealed preference data. Urban tram and bus crowding valuation is estimated in a European context based on a Dutch case study network. Based on the estimated discrete choice model, we conclude that crowding plays a significant role in passengers’ route choice in public transport. The average crowding multiplier of in-vehicle time equals 1.16 when all seats are occupied. For frequent travellers, this value is equal to 1.31. Our study results suggest that infrequent travellers do not incorporate expected crowding in their route choice. These values are significantly lower than those reported in past studies based on choice experiments.

The insights gained from our study can support the decision-making process of policy-makers, by quantifying the benefits of measures aiming to reduce crowding levels for example in a cost–benefit analysis framework.


Awarded with an ERC Starting Grant

I am honored and delighted to be awarded with an ERC (European Research Council) Starting Grant. My project CriticalMaaS will develop and test concepts, theories and models for planning, operating and evaluating the dynamics of Mobility as a Service.

The project will run for 5 years and will be performed by a team of PhD students, post-doc researchers and in collaboration with colleagues within the Department of Transport and Planning at TU Delft and beyond.

See the announcement on the ERC website
and on the Faculty news.

Recent media attention to fare-free public transport evaluation

I have been interviewed by the following media outlets:

Deutsche Welle [in English]

Huffington Post [in English]

Spiegel [in German]

Zeit [in German]

OV Pro [in Dutch, below]

‘Prijs OV speelt nauwelijks rol bij keuze voor auto boven OV’

Other news items featuring insights form these interviews:

SVT [in Swedish]

Bild [in German]

DR [in Danish]


How does satisfaction sum up?

Is satisfaction the sum of its parts? Behavioral scientists such as Daniel Kahneman and Dan Ariely provide ample evidence that human experience is not a simple summation of its parts. Different biases such as recency and salience effects have been observed.

How is it then with travel satisfaction? Is satisfaction with the door-to-door journey simply the sum of its parts? does the last part determine the overall impression? or does the worst experience loom over anything else?

Read the results of our research – together with Roberto Abenoza and Yusak Susilo from KTH – published in Transportation here. (open access)

TRB 2018

Looking forward to meeting many colleagues and friends at the Transportation Research Board (TRB) 97th Annual Meeting in Washington DC next week (January 7-11)!

The following studies which I have been involved in together with students and colleagues will be presented at TRB this year:

  1. The Potential of Demand Responsive Transport as a Complement to Public Transport: An Assessment Framework and an Empirical Evaluation. (Session 293, Monday 10:15 AM- 12:00 PM Convention Center, 147A) Alonso-Gonzalez M., Liu T., Cats O., van Oort N. and Hoogendoorn S.
  2. Individual, Travel and Bus Stop Characteristics Influencing Traverlers’ Safety Perceptions. (Session 556, Tuesday 10:15 AM- 12:00 PM Convention Center, 143B) Abenoza R.F., Ceccato V., Susilo Y. and Cats O.
  3. Constructing Spatiotemporal Load Profiles of Transit Vehicles with Multiple Data Sources. (Session 649, Tuesday 1:30 PM- 3:15 PM Convention Center, Hall E) Lou D., Bonnetain L., Cats O. and van Lint H.
  4. Strategic Planning and Prospects of Rail-bound Demand Responsive Transit. (Session 660, Tuesday 1:30 PM- 3:15 PM Convention Center, Hall E) Cats O. and Haverkamp J.
  5. Demand-anticipatory Flexible Public Transport Service. (Session 784, Tuesday 8:00 AM- 9:45 PM Convention Center, Hall E) van Engelen M., Cats O., Post H. and Aardal K.

In addition, will be presiding:

  • Poster session 650 on Transit Service Disruptions: Impacts and Mitigation Measures (Tuesday 1:30 PM- 3:15 PM, Convention Center, Hall E)
  • Poster session 651 on Economic and Optimization Models for Integrated Service Planning (Tuesday 1:30 PM- 3:15 PM, Convention Center, Hall E)

In conjunction with the TRB conference, Jaime Soza Parra and I meet with Washington Metropolitan Area Transit Authority on Jan 11 to present and discuss the preliminary results of our evaluation of their headway-control experiment.