Real-time Predictions for Light Rail Train Systems

Oded Cats
o.cats@tudelft.nl

LRT predictions: IEEE ITSC 2014, Qingdao China
Motivation

- Passengers and operators
- Reduce travel and operational uncertainty

- Mixed-operations, crossings
- LRT travel time fluctuations
 - \(CV(\text{running time}) = 0.44 - 0.86 \ [0.08, 1.44] \)

- Lack of knowledge on
 - the accuracy and reliability of RTI systems in practice
 - exact train positioning predictions
Study approach and research questions

- Tracker, filter and **predictor**

- Common practice: predict based on either the remaining scheduled time or assuming a constant speed

- Incorporating instantaneous **vehicle position and speed** – remaining speed profile, acc-/deceleration, relation to design speed

- Evaluating the performance of a currently deployed RTI system
- Developing and testing two alternative prediction schemes for LRT

- A **time-series model at the link-level**
Prediction schemes

- **Constant-speed model**
 \[\widetilde{\Delta t} = \frac{D-d_0}{v_o} \]

- **Design-speed model** – decomposition of vehicle link-based speed regime
 \[
 \widetilde{\Delta t} = \begin{cases}
 0 < d_0 \leq d_1 & T - \sqrt{2d/a} \\
 d_1 < d_0 \leq D - d_2 & \frac{T_2 - \sqrt{2d/a}}{v_d} + t_2 \\
 D - d_2 \leq d_0 < D & \sqrt{2(D - d)/b}
 \end{cases}
 \]

- **Speed-position model** – incorporating information on current speed
Trajectory scenarios

approaching the downstream station with a speed higher than the design speed (constant deceleration rate)
Trajectory scenarios

Travelled distance (m)

Designed speed (m/s)

v_d

(d_0, v_0)

Running faster than the design speed: (a) if the vehicle is too close to a downstream station (a constant deceleration rate b); (b) otherwise (first decelerate with rate c, maintain the design speed, decelerate with constant rate b)
Trajectory scenarios

slower than the design speed and is sufficiently far from the downstream station (acceleration with rate a, constant speed and deceleration with rate b)
Trajectory scenarios

running at a speed lower or equal to the design speed: (a) a sufficiently high speed (first roll and then break with deceleration rate b); (b) otherwise (accelerate with rate a, decelerate with rate c)
Remaining travel time:
Speed-position model

![Graph of Remaining travel time: Speed-position model](image)
Case study: Bybanen, Bergen, Norway

- Opened in 2010
- 9.8 km
- 25 crossings
- 4 tunnels
- 31,000 pass/day
- Mixed operations
- 6-12 dep/hr
- Dispatching control only
Implementation and Evaluation

• **AVLS** data from Feb 1–July 31, 2013 (train GPS, odometer records, activation of loops and track circuits)
• ∼0.5 million records
• Generate estimated arrival time at downstream stations

• Generate RTI

\[
\pi^p_s(\tau) = \Delta t^p_{k,m}(\tau) + \sum_{i=m}^{s-1} t^d_i + \sum_{i=m}^{s-1} t^r_i
\]

• Measures of performance
 • Short-term prediction error
 \[
e^p_{k,s+}(\tau) = \pi^a_{k,s+} - \pi^p_{k,s+}(\tau)
\]
 • RTI prediction error
 \[
e^p_s(\tau) = \pi^a_{k,S} - \pi^p_S(\tau)
\]
RTI prediction errors
Constant-speed model

83% within [-1min,+1min]

57% within [-30sec,+30sec]
Short-term prediction errors
Model comparison
Short-term prediction errors
Speed-position model

- Case 1: 16%
- Part A of Case 2: 6%
- Part B of Case 2: 30%
- Case 3: 39%
- Part A of Case 4: 8%
- Part B of Case 4: 1%

LRT predictions: IEEE ITSC 2014, Qingdao China
Conclusions and future work

- Prediction **accuracy** (83%) > trunk bus lines [Stockholm, 64%] < metro [Boston, 90%]

89% for proposed prediction schemes
- Robust w.r.t. evolution along the line, under disturbances

- Inducing potential benefits for both passengers and operators
- A decision tree for choosing most appropriate prediction scheme
- Embed into speed control and guidance systems
- Addressing detected prediction shortfalls
Thank you! Questions?

o.cats@tudelft.nl