Identification and Classification of Urban Centers based on Public Transport Passenger Flows Data

Oded Cats, Qian Wang and Yu Zhao
o.cats@tudelft.nl
Measuring urban activity centers

- What are the main urban activity centers?
- What is the spatial and temporal distribution of activities?
- How can the centers be classified based on their functions?

- Support evidence-based spatial planning
- Assess diversion from planning policies

- **Morphological** methods
 - land-use/network densities as proxies

- **Functional** methods
 - travel habit surveys

- Heavily focus on employment/commuting
- Lack of a systematic method classification
Analysis approach

Identification

Classification

Stops

Clusters

Classes

Identifying and Classifying urban Centers: hEART 2014
Identification method

- Group *member* stations to the closest *cluster-centre* station which dominates the cluster in terms of passenger *flows*, while not exceeding a maximum *distance*.

- Using total daily incoming and outgoing flows.

- Not exhaustive; share of flows as a stopping criterion.

- A sensitivity analysis to test partition consistency.
Classification method

- Calculating cluster dissimilarity
 \[d_{cm,cn} = \sum_t |y_{m,t} - y_{n,t}| \]

- Create a hierarchical tree based on the distance function

- Partition clusters based by minimizing intra-cluster variations and maximizing inter-cluster variations

- Assess the quality of the partitioning
 \[d_{intra} = \sum_{u_k \in U} \sum_t |y_{m,t} - y_{n,t}| \]
 \[d_{inter} = \sum_{u_k,u_l \in U} \sum_t |y_{m,t} - y_{n,t}| \]
The case of Stockholm

- Stockholm metropolitan area (~Stockholm County)
- 26 municipalities, 6500 km², 2.16 m
A shift in planning policy

Data

- Boarding and alighting flows per station for all PT modes by time-of-day for 12,757 stops in 2011-2012

- Primary travel mode: 54% of all trips by PT, 80% for trips destined in the regional core, 0.63 trips per day per per.
Sensitivity to clustering parameters

Identifying and Classifying urban Centers: hEART 2014
CDF of clustered-flows

Marginal share of the flows assigned to clusters

Clusters

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

R=1km Threshold=0.5 R=1km Threshold=0.6 R=1km Threshold=0.7

R=2km Threshold=0.5 R=2km Threshold=0.6 R=2km Threshold=0.7

R=3km Threshold=0.5 R=3km Threshold=0.6 R=3km Threshold=0.7

R=4km Threshold=0.5 R=4km Threshold=0.6 R=4km Threshold=0.7

Identifying and Classifying urban Centers: hEART 2014
Radius = 1.5 km, Threshold = 60%
Identifying and Classifying urban Centers: hEART 2014
Classification indicators

- **A+B**: Total flow magnitude, 'center size'
 \[f_{m,t}^a + f_{m,t}^b \]

- **A-B**: Centre attraction (net inflow)
 \[f_{m,t}^a - f_{m,t}^b \]

- **(A-B)/(A+B)**: Relative attraction (-1 source-sink +1 roles)
 \[(f_{m,t}^a - f_{m,t}^b)/(f_{m,t}^a + f_{m,t}^b) \]
Hierarchical clustering trees (dendrogram)
Identifying and Classifying urban Centers: hEART 2014
Identifying and Classifying urban Centers: hEART 2014
Identifying and Classifying urban Centers: hEART 2014
(A-B)/(A+B)
Identifying and Classifying urban Centers: hEART 2014
Has Stockholm grown polycentric?

- Multi-centric: the geographical and planning context facilitated the generation of a relatively large number of sub-centers
- More functionally multi-centric than morphologically

- The regional core still dominates
- **Specialized secondary sub-centers**: attractors of a secondary order beyond the inner-city
- **Expending beyond the waterways**: Balanced-flows in the south edges of the inner-city
- Other ‘sub-centers’
 - insofar remain ‘bedroom suburbs’ or negligible
Conclusion

- An integrated method for identifying and classifying urban activity centers based on transport flows data

- Functional-movements; morphological-no interactions; temporal profiles, pervasive data collection

- OD flows rather than incoming and outgoing, multi-modal

- Could be especially useful for mega-cities in emerging economies, urban structure evolution