hEART2017 conference

I participate in the hEART conference which take place this week in the Technion – Israel Institute of Technology, Haifa.

After hosting it last year in Delft, it is great to attend it in the campus where I have studied for four years and excited to share the experience gained in the following studies:

  1. “Coordinating Merging Public Transport Operations Using Holding Control Strategies” presented by Georgios Laskaris
  2. “Tactical Service Design and Vehicle Allocation Optimization“, which I present
  3. “An Integrated Trip Assignment Model for Passenger Rail Systems” presented by Flurin Hänseler
  4. “Traveler’s Perceived Safety at Bus Stops in Stockholm, Sweden”, presented by Roberto Fernandez Abenoza

MT-ITS 2017

Will be attending MT-ITS 2017, the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, together with colleagues with whom I collaborated on public transport -related studies.

I am involved in the following contributions that will be presented in the upcoming conference:

  • Analysis of Network-wide Transit Passenger Flows based on Principal Component Analysis. (Presenter: Ding Luo)
  • Simulating the Effects of Real-time Crowding Information in Public Transport Networks (Presenter: Arek Drabicki)
  • Impact of Relocation Strategies for a Fleet of Shared Automated Vehicles on Service Efficiency, Effectiveness and Externalities (Presenter: Konstanze Winter)
  • Real-time Short-turning in High Frequency Bus Services based on Passenger Cost (Presenter: David Leffler)
  • Measuring Spill-over Effects of Disruptions in Public Transport Networks (I will present work performed with Sanmay Shelat)

Looking forward to my first MT-ITS experience!

Added on 16-8-2017: links to all conference papers are available on the Publications page.

Two public transport proposals granted

Two public transport projects will be soon launched in the Department of Transport and Planning at TU Delft:

(1) SCRIPTS – on flexible demand-anticipatory services. Granted in the Smart Urban Regions in the Future (SURF) program by NWO [2016-2018; total of 1,800,000€, of which 500,000€ in TU Delft]. ‘Smart Cities’ Responsive Intelligent Public Transport Systems’ will develop advanced models for the optimal design of hybrid public transport systems, involving demand responsive transport services that are flexible in route and schedule and (self-)organized through ICT platforms, and the simulation of their performance, including a series of pilots and showcases.

(2) TRANS-FORM – on real-time transfer and congestion management. Granted in the Co-fund Smart Cities and Communities (ENSCC) call [2016-2018; total of 1,800,000€, of which 315,000€ in TU Delft]. A consortium of universities, industrial partners, public authorities and private operators from Switzerland, Sweden, Spain and the Netherlands, led by TU Delft. ‘Smart Transfers through Unravelling Urban Form and Travel Flow Dynamics’ will develop a multi-level approach for monitoring, mapping, analyzing and managing urban dynamics in relation to interchanging travel flows. Analysis of pedestrian and traveler flows at the hub, urban and regional networks.

Three new PhD positions in the area of public transport modelling will be soon available to work in these projects. Relevant background and skills include simulation modelling, network analysis and optimization.

UPDATE (28-01-2016):

Interested? See the job ad here. Applications are due by February 10.



The more links the better network robustness is?

Investments in public transport projects are increasingly motivated not merely based on travel time savings but also in relation to improvements in service reliability, comfort and robustness. However, there are no standard practices for incorporating the impacts of alternative investments on network robustness.

Together with Erik Jenelius from KTH,  a methodology for assessing the value of new links for public transport network robustness, considering disruptions of other lines and links as well as the new links themselves, was developed. We applied this methodology to a light rail line in Stockholm.

A distinction is made between the value of robustness, defined as the change in welfare during disruption compared to the baseline network, and the value of redundancy, defined as the change in welfare losses due to disruption. Topological studies concluded that redundancy is an important feature for network robustness. Interestingly, we found that In some cases, the new line results with seemingly paradoxical effects as it leads to greater disruption costs.

Check the full paper here



INSTR2015 – 6th International Symposium on Transportation Network Reliability – the Value of Reliability, Robustness and Resilience, took place yesterday and today in Nara, Japan. First time that I take part in what seems to be a very relevant conference for my line of research concerning the reliability and vulnerability of public transport systems.

Here you can find my conference contributions concerning:

(1) Multi-crtieria evaluation of the resilience value of public transport investment plans based on a full-scan approach with the Stockholm public transport development plan as a case study (click for paper: instr2015_Cats_resilience_value)

(2) Investigating the role of exposure in public transport network vulnerability. A work that was preformed together with Menno Yap and Niels van Oort based on estimating large disruption data from the Netherlands and analyzing the impacts of accounting for exposure on the identification and evaluation of link criticality. (click for paper: instr2015_EXPOSURE). Below: Menno presenting on INSTR.

2015-08-03 15.21.37

(3) Analyzing the impact of partial (unlike complete) failures. Together with Erik Jenelius, we studied the relation between the extent of capacity reduction at the line level and its consequences on societal costs by performing a full network scan for the Stockholm network (click for paper: Beyond a complete failure INSTR) Below: Erik presenting on INSTR.

2015-08-03 14.05.57

Each of these studies deployed a distinctly different methodologies – network topology analysis (while accounting for travel impedance and demand), static assignment model and a dynamic agent-based transit assignment model, respectively.

Below: Still astonished by the Japanese public transport system!