hEART2017 conference

I participate in the hEART conference which take place this week in the Technion – Israel Institute of Technology, Haifa.

After hosting it last year in Delft, it is great to attend it in the campus where I have studied for four years and excited to share the experience gained in the following studies:

  1. “Coordinating Merging Public Transport Operations Using Holding Control Strategies” presented by Georgios Laskaris
  2. “Tactical Service Design and Vehicle Allocation Optimization“, which I present
  3. “An Integrated Trip Assignment Model for Passenger Rail Systems” presented by Flurin Hänseler
  4. “Traveler’s Perceived Safety at Bus Stops in Stockholm, Sweden”, presented by Roberto Fernandez Abenoza

MT-ITS 2017

Will be attending MT-ITS 2017, the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, together with colleagues with whom I collaborated on public transport -related studies.

I am involved in the following contributions that will be presented in the upcoming conference:

  • Analysis of Network-wide Transit Passenger Flows based on Principal Component Analysis. (Presenter: Ding Luo)
  • Simulating the Effects of Real-time Crowding Information in Public Transport Networks (Presenter: Arek Drabicki)
  • Impact of Relocation Strategies for a Fleet of Shared Automated Vehicles on Service Efficiency, Effectiveness and Externalities (Presenter: Konstanze Winter)
  • Real-time Short-turning in High Frequency Bus Services based on Passenger Cost (Presenter: David Leffler)
  • Measuring Spill-over Effects of Disruptions in Public Transport Networks (I will present work performed with Sanmay Shelat)

Looking forward to my first MT-ITS experience!

Added on 16-8-2017: links to all conference papers are available on the Publications page.

Prediction for proactive mitigation of bus bunching


A new paper proposes a data driven method to predict Bus Bunching in real-time followed by the selection and deployment of a corrective action based on the assessment of bunching likelihoods. The method was validated using one-year data of 18 real-world bus routes. This combined prediction-control approach can contribute to more proactive bus operations and improved service reliability.


Link to the full paper









Exposing the role of exposure in public transport risk analysis

In the last several years, I have investigated the impact of service disruptions in public transport networks. In a series of network topology and dynamic transit assignment studies, I have looked into indicators of link criticality, measures of impacts on system performance, mitigation value of real-time information provision, identifying strategic links for increased capacity and the robustness value of new links and extension plans.

One common limitation to all of these studies was the lack of information on the probabilities associated with disruptions. This prevented a complete risk analysis and assessing the (e.g. annual) costs and benefits associated with disruptions and mitigation measures.

Together with Menno Yap and Niels van Oort, the frequency and duration of various disruption types on each public transport mode (train, metro, tram and bus) were estimated based on a unique dataset. We also identify which is the primary predictor of each variable to allow researchers and professionals in other contexts to estimate disruption probabilities in the lack of local data.


We propose a method for embedding link exposure into the identification and evaluation of critical links and perform a risk analysis for the multi-modal public transport network of the Rotterdam The Hague Metropolitan Area. By comparing the results with the conventional measures, we demonstrate that disregarding exposure risks prioritizing heavily utilized links instead of those which are actually the weakest.

Click here for the link to the full paper.

What is the robustness value of public transport development plans?

Investments in transport are increasingly motivated by the need to improve its robustness — the capacity to absorb disturbances with a minimal impact on system performance. Nonetheless, there is lack of knowledge on how to assess and quantify the robustness value of new investments as part of strategic planning. This study investigates the robustness of alternative public transport networks by assessing the consequences of link failures on network performance. A full-scan disruption impact analysis is performed and its implications on passenger’s group composition and travel time losses are analysed for a public transport development plan in Stockholm, Sweden. A decision to extend this system substantially with 23 new stations and 35 km of new tracks by 2025 was recently undertaken.

Framtidens spartrafikkarta_söderstaden

The results suggest that as a result of the development plan, the robustness of the case study network will improve in terms of average performance deterioration as well as worst case scenario for all performance indicators. Neglecting abnormal operations in project appraisal can potentially lead to the underestimation of its benefits. Moreover, the critical links in each network are identified and impact disparity is investigated. The analysis method presented in this study can support the consideration of development plan impacts on network robustness in the strategic planning process.

See here the full paper