Crowding in public transport

Crowding in public transport can be of major influence on passengers’ travel experience and therefore affect route and mode choice. The impact of crowding on passenger choices has been estimated in many studies by means of stated-preferences choice experiments. Respondents are then asked to make hypothetical choices under a range of scenarios based on which choice models can be estimated, including quantifying the impact of on-board crowding on route choice. This results in in-vehicle multiplier values ranging between 1-2.7 (!). Results from meta-analysis of these studies have been for example reported and used in evaluating capacity increase investments (see the case of our study of a metro line in Stockholm).

These estimates seem strangely high. They imply that passengers will rather travel twice as long if they can have a seat instead of to travelling in a densely crowded vehicle. These has severe ramifications for project appraisal – do you invest in increasing vehicle size, higher frequency or higher speed? In a choice experiment it is easy to indicate that you rather wait for the next vehicle or travel longer than to ride a busy vehicle. However, there was very scarce evidence that people actually do these trade-offs in reality. We therefore wanted to find out to what extent crowding impacts passenger route choices based on observed behavior. This is now possible thanks to large-scale smart card deployment.

See full paper here: “Crowding valuation in urban tram and bus transportation based on smart card data”

In this study, crowding valuation for urban tram and bus travelling is determined fully based on revealed preference data. Urban tram and bus crowding valuation is estimated in a European context based on a Dutch case study network. Based on the estimated discrete choice model, we conclude that crowding plays a significant role in passengers’ route choice in public transport. The average crowding multiplier of in-vehicle time equals 1.16 when all seats are occupied. For frequent travellers, this value is equal to 1.31. Our study results suggest that infrequent travellers do not incorporate expected crowding in their route choice. These values are significantly lower than those reported in past studies based on choice experiments.

The insights gained from our study can support the decision-making process of policy-makers, by quantifying the benefits of measures aiming to reduce crowding levels for example in a cost–benefit analysis framework.

 

On-demand rail-bound system

On-demand public transport is expected to become an increasingly important component of public transport systems, facilitated by vehicle automation. The potential of rail-bound on-demand services has been largely overlooked. Together with Jesper Haverkmap, who did his master thesis in the Dutch Railways, we determine the capacity requirements of an envisaged automated on-demand rail-bound transit system which offers a direct non-stop service.

The full paper published on Transportation Research Part B: Methodological is available here.

How many vehicles would such a system require? What are the costs associated with such a system? What are the track and station capacity required? What level of service will it deliver? What are the network saturation patterns given that vehicles can now perform route choice and choose the shortest path to passengers’ destination? What are the consequences for equity in service provision?

An optimization model is formulated for determining the optimal track and station platform capacities for an on-demand rail transit system so that passenger, infrastructure and operational costs are minimized. The macroscopic model allows for studying the underlying relations between technological, operational and demand parameters, optimal capacity settings and the obtained cost components.A series of sensitivity analyses are performed to test the consequences of a range of network structures, technological capabilities, operational settings, cost functions and demand scenarios for future automated on-demand rail-bound systems.

The model is applied to a series of numerical experiments followed by its application to part of the Dutch railway network. The performance is benchmarked against the existing service, suggesting that in-vehicle times can be reduced by 10% in the case study network while the optimal link and station capacity allocation is comparable to those currently available in the case study network. While network geometry and demand distribution are always the underlying determinants of both service frequencies and in-vehicle times, line configuration is only a determinant in the conventional system, whereas the automated on-demand rail service better caters for the prevailing demand relations, resulting in greater variations in service provision.

Here is a clip made by the Dutch Railways (NS) on the concept of on-demand services, denominated as Swarming transport. 

 

 

TRB 2018

Looking forward to meeting many colleagues and friends at the Transportation Research Board (TRB) 97th Annual Meeting in Washington DC next week (January 7-11)!

The following studies which I have been involved in together with students and colleagues will be presented at TRB this year:

  1. The Potential of Demand Responsive Transport as a Complement to Public Transport: An Assessment Framework and an Empirical Evaluation. (Session 293, Monday 10:15 AM- 12:00 PM Convention Center, 147A) Alonso-Gonzalez M., Liu T., Cats O., van Oort N. and Hoogendoorn S.
  2. Individual, Travel and Bus Stop Characteristics Influencing Traverlers’ Safety Perceptions. (Session 556, Tuesday 10:15 AM- 12:00 PM Convention Center, 143B) Abenoza R.F., Ceccato V., Susilo Y. and Cats O.
  3. Constructing Spatiotemporal Load Profiles of Transit Vehicles with Multiple Data Sources. (Session 649, Tuesday 1:30 PM- 3:15 PM Convention Center, Hall E) Lou D., Bonnetain L., Cats O. and van Lint H.
  4. Strategic Planning and Prospects of Rail-bound Demand Responsive Transit. (Session 660, Tuesday 1:30 PM- 3:15 PM Convention Center, Hall E) Cats O. and Haverkamp J.
  5. Demand-anticipatory Flexible Public Transport Service. (Session 784, Tuesday 8:00 AM- 9:45 PM Convention Center, Hall E) van Engelen M., Cats O., Post H. and Aardal K.

In addition, will be presiding:

  • Poster session 650 on Transit Service Disruptions: Impacts and Mitigation Measures (Tuesday 1:30 PM- 3:15 PM, Convention Center, Hall E)
  • Poster session 651 on Economic and Optimization Models for Integrated Service Planning (Tuesday 1:30 PM- 3:15 PM, Convention Center, Hall E)

In conjunction with the TRB conference, Jaime Soza Parra and I meet with Washington Metropolitan Area Transit Authority on Jan 11 to present and discuss the preliminary results of our evaluation of their headway-control experiment.

hEART2017 conference

I participate in the hEART conference which take place this week in the Technion – Israel Institute of Technology, Haifa.

After hosting it last year in Delft, it is great to attend it in the campus where I have studied for four years and excited to share the experience gained in the following studies:

  1. “Coordinating Merging Public Transport Operations Using Holding Control Strategies” presented by Georgios Laskaris
  2. “Tactical Service Design and Vehicle Allocation Optimization“, which I present
  3. “An Integrated Trip Assignment Model for Passenger Rail Systems” presented by Flurin Hänseler
  4. “Traveler’s Perceived Safety at Bus Stops in Stockholm, Sweden”, presented by Roberto Fernandez Abenoza

MT-ITS 2017

Will be attending MT-ITS 2017, the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, together with colleagues with whom I collaborated on public transport -related studies.

I am involved in the following contributions that will be presented in the upcoming conference:

  • Analysis of Network-wide Transit Passenger Flows based on Principal Component Analysis. (Presenter: Ding Luo)
  • Simulating the Effects of Real-time Crowding Information in Public Transport Networks (Presenter: Arek Drabicki)
  • Impact of Relocation Strategies for a Fleet of Shared Automated Vehicles on Service Efficiency, Effectiveness and Externalities (Presenter: Konstanze Winter)
  • Real-time Short-turning in High Frequency Bus Services based on Passenger Cost (Presenter: David Leffler)
  • Measuring Spill-over Effects of Disruptions in Public Transport Networks (I will present work performed with Sanmay Shelat)

Looking forward to my first MT-ITS experience!

Added on 16-8-2017: links to all conference papers are available on the Publications page.